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Thermofield dynamics in the theory of magnetic polaron 
mobility in ferromagnetic semiconductors 

B V Egorov 
Institute of Metal Physics, Prospekt Vemadskogo 36,252680. Kiev, Ukraine 

Received IOOctober 1991 

Abstract. We used the method of thermofield dynamics to calculate the magnetic polaron 
mobility in a ferromagnetic semiwnductor at temperatures much lower than the Curie 
temperature. We obtained an exact equation for mobility in the lowest order of electron 
occupation numbers. Other parameters were assumed to be arbitrary quantities, The results 
showed that the gap in the magnon spectrum changes the low-temperature mobility asymp- 
totics from polynomial to exponential form. 

1. Introduction 

Over the last 30 years, many people have studied the magnetic polaron problem, in 
which the conduction electron mobility in a magnetic semiconductor is affected by the 
lattice magnetization created by the electron itself. The magnetic polaron problem has 
al l  the difficulties inherent in the particle-boson interactions involving strong coupling, 
so it would seem that we cannot construct a rigorous theory and must instead be satisfied 
with various special limiting cases and variational methods. 

Fortunately, because of spin conservation, ferromagnetic semiconductors are an 
exception to this rule and the Schrodinger equation for magnetic polaron states can be 
solved rigorously for any spin value of the spin-electron coupling at T = 0 [l, 21 (see 
also [55]).  At zero temperature, magnetic polarons are undamped quasiparticles with 
an effective mass somewhat larger than that of a free electron, and the bottom of the 
magnetic polaron band is somewhat lower. 

In addition to the renormalization of both the mass and the ground state level at 
finite temperatures, polarons have a finite lifetime and magnon contribution to their 
mobility. Increasing temperature causes a sharp drop in the polaron lifetime, and at 
some temperatures it may be of the same order as the magnetic polaron energy. The 
spectrum ceases its free-quasiparticle behaviour and most of the carriers are trapped by 
magnetization fluctuations [6-71. 

The magnetic polaron problem has been treated in various ways. Most papers have 
dealt with extreme cases of either weak spin-electron coupling (wide electron bands) 
[%lo] orverystrongspin-electroncoupling (narrow bands) [ll, 121. For thelattercase, 
a low value of 1/2S was used as the perturbation parameter (S is the atomic spin). 
Regardless of the fact that the s-f exchange integral might be large, the effective mass 
renormalization is small in the limit 1/2S+ 0. 
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In a number of papers [1?-15], the relation between the band width and the s-f 
exchange constant A is assumed to be arbitrary, but the approximations used give rise 
to uncontrolled errors in the final results. The authors of [16] calculated the spectrum 
and damping of a magnetic polaron at low temperatures without using any uncontrolled 
approximations. The authors of [17] claimed to do the same, but the resultsof these two 
papers are not in agreement. 

The authors of [ 161 used expansion of path integralsover magnon numbers, but they 
assumed that the magnon energies would be negligible (ap = 0). 

Previous papers that dealt with the intermediate coupling case were concerned only 
with the one-particle Green function, and even so, no attempts were made to calculate 
polaron mobility. 

The aim here is to fill this gap in our knowledge (at least for low temperatures) by 
calculating the spin polaron damping and its mobility while explicitly taking into account 
magnon energies. In the Limit mq = 0 our results are in agreement with those of [16]. The 
only restriction on the values of parameters is that the temperature must be low. All 
other relations between the parameters of the Hamiltonian are assumed to be arbitrary. 

The technique of thermofield dynamics is useful for obtaining low-temperature 
expansionsin cases where the zero-temperature problem hasan exact solution [IS] (e.g. 
the case of the magnetic polaron problem in ferromagnets). 

The thennofield dynamics method is based on the equivalence of the calculation of 
traces of statistical matrices and the calculation of the matrix elements of same vacuum 
state dependent on temperature (for details see [l8]). Therefore, it is possible to intro- 
duce a temperaturedependent ‘Hamiltonian’. This ‘Hamiltonian’coincides with a true 
Hamiltonian in the limit T = 0. Using the standard thermofield dynamics procedure, we 
introduce a Hamiltonian dependent on magnon number n. We consider the terms 
proportional ton that are small at low temperatures as perturbative. We treat the terms 
of zeroth order in n as the unperturbed part of the Hamiltonian. We diagonalize the 
unperturbed Hamiltonian by the appropriate canonical transformation and we then 
develop a perturbation technique with n as the only small parameter. To the first non- 
vanishing order, we find the magnetic polaron damping and mobility. 

As a rule, magnon energies are small compared with electron energies, but we 
show that magnon energies must be taken into account to obtain the low-temperature 
asymptotics of polaron damping. If we regard w p  as negligibly small, then the spin 
rotation invariance ofthe s-f exchange Hamiltoniancausescancellations in the equations 
for polaron damping. The amplitude of the electron-magnon scattering vanishes when 
wavevectors tend towards zero. Therefore, in the equations for effective mass and 
damping, the temperature correction terms have high powers (e.g. the damping 
y a T’n). 

However, if we take into account the magnetic anisotropy energy, the rotation 
invariance breaks down. The magnon spectrum has a gap of type wq = w o  + cy2, 
wo # 0 and the low-temperature asymptotic must be of another type. We show that 
temperature correction terms of the order wOT3/* exp(-wo/kT) survive in the 
expression for damping. 

2. Thermofield dynamics transformations 

The Hamiltonian for a conduction electron interacting with the spins of magnetic atoms 



Here aiq and a,, (u = up (U) or down (d)) are conduction electron operators with spin 
u and wavevector p; A > 0 is the s-f exchange integral, N is the number of magnetic 
atoms in the crystal; S+, S- and Sz are the Fourier images of the lattice spin operators; 
andH,istheHamiltonianoftheatomicspins. Forconvenience, wetransformS+,S-and 
S* to Bose operators using the Dyson-Maleev transformation, in the site representation 

s, = (2S)'"C,+(l - C,'C./2S) s; = (2s)'"C" s; = s - c;c.. (2)  
After the Fourier transformation c l  = (N)'@C c,' exp(ikr,) the Hamiltonian (1) 

takes the form 

In the above equation we have H H  = C w(q)c i cq ,  and E(& = E ( p )  + AS&, in which 
6.= l a n d a d =  -1. 

In (3) H ,  is theHamiltonian for free magnons. 
To introduce thermofield dynamics transformations, we take this Hamiltonian (3) 

and add the tilded Hamiltonian [18] 

A, = - 2 w(q) f ,+ f ,  (4) 
that contains a Bose field with negative energies. Adding I'l, to (3) does not affect its 
eigenstates since it does not contribute to the interaction. 

We wish to solve the eigenvalue problem for the Hamiltonian (3) on a single-fermion 
subspace, so we do not need to use tilded electron operators. 

To connect the variables of (4) with those of (3), the Bogolubov transformation must 
be done in the following way: 

cq = cosh 6(q) .$(p) + sinh 6(q)i: (0) 
f, =cosh 6(q)E,(p) + sinh 6(q)i:(B) 

( 5 4  
(Sb) 

( 5 4  
sinh O ( q )  = nifi = (e8dq) - 1)-ln 

cosh B(q) = (1 + nq)'f i .  

p = l /kT 

Following [HI, the temperature-dependent Bose operators a@), ":La) and .",(p), 
e,(@) are, respectively, the hole and magoon thennofield operators. The vacuum state 
I@) for suchoperators (i.e. @) I@) = Oandi,(P) I@) = 0) dependson the temperature 
and coincides with the thermodynamic equilibrium state, so that the magnon numbers 
are given in the usual way as (@lc,+c, IQ) = nq. The use of this equation enables one to 
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express the product of any operator and the statistical matrix as the diagonal matrix 
element of the operator on the vector I@). 

Substituting the thennofield operators for the initial ones in the Hamiltonian 
fi, + H, we find the result to lowest order in nq by omitting squared and higher terms 
in n,,: 

H H  + H = H" + H,  ( 6 4  

E (a;" sinh e(p - k):pp-kapd + HC) A (2s) ''2 
HI  = 

kp 

For brevity we omit the index p in the thermofield magnon operators c .  We also 
neglect the difference between cosh e(q) and unity. This small quantity must be taken 
into account when calculating the effective mass renormalization. but it  leads to higher 
order corrections when calculating the damping renormalization. 

At T = 0, the non-vanishing part H, will be treated as the unperturbed Hamiltonian. 
It is made up of terms not involving creation or annihilation of thermofield holes. The 
perturbative part HI takes account of hole creation processes in the lowest order in 
temperature. This replaces the processes of magnon annihilation usually found in quan- 
tum mechanics. Since the Dyson-Maleev transformation is not unitary, it contributes 
non-Hermitian terms to the Hamiltonian (6) (e.g. there is no Hermitian conjugated 
counterpart to the last term in (6)). Nevertheless, one can see that this part must contain 
terms describing either the annihilation of two real magnons or the creation of two 
thermofield holes, and it is of higher order in temperature. 

After transformation (5) we obtain the Hamiltonian in a simple form in which Ho 
describes spin polaron states with infinite lifetime and H, unavoidably causes polaron 
decay because it creates a magnon hole with negative energy anda magnon with positive 
energy. This process substitutes for the usual electron-magnon scattering. 

To calculate the damping and mobility of the spin polaron, we have to diagonalize 
H, and transform the free-electron operators a& and apo to polaron operators a;o and 
ffw. 
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3. Canonical transformation to polaron operators 

The transition to spin polaron operators can be made in several ways, for example by 
usingtheexplicit formofthespinpolaron wavefunctions[ 1-31, We shalluse thecanonical 
transformation with the following unitary operator 

0 = eB B = 2 [ ( 2 S ) ” Z b ( k , p ) a ~ ~ ~ ~ _ p n p ,  - (2S)”’b(k ,p)a~~c,+_,nk , l  (7) 
kp  

where b(k, p)  is a real function whose explicit form is defined below. 
The canonical transformation (7) has been used in the theory of phonon polarons of 

intermediate coupling [ 1 9 ] ,  but in those cases it does not lead to exact eigenfunctions. 
This is because the transformation to phonon polaron operators must include terms with 
any power of boson creation and annihilation operators. In the spin polaron case, these 
terms vanish because of spin conservation. The spin polaron in ferromagnets bears only 
a virtual boson, and the transformation (7) gives the precise diagonalization of the 
Hamiltonian H,. 

The transformed fermion and boson operators are 

= eBaz0 e-B y f  = eBc$ e-B. (8) 

The function b ( k , p )  is defined by the condition that the wavefunction al- 10) would 
satisfy the Schrodinger equation with the Hamiltonian H,,. Here thestate 10)corresponds 
to the fermion vacuum and thermofield vacuum I@): 10) = 

Weonlystudied one-electronstates, and thefollowingidentitiesarevelid in theone- 
fermion subspace: 

@ I@). 

akoapol  = 0 akoa;-o = 0 akoa& = 6kp600i. (9) 

Expanding e-B and summing the row taking into account identities ( 9 ) .  we obtain 
the expression 

= 1 + a ~ u ~ p u [ ( c o s  L l ) k p  - S k p ]  + a l d a p d  [(cos L 2 ) k p  - 6 k p ]  
kp k p  

where quasimatricesi,andi,, with elements L,(q,p) and L,(q,p), are given by 

The matrix functions in (10) must be treated as the sum-of co5esponding series. 
These series only contain terms with even powers of matrices L, and b, so there are no 
terms with fractional powers of operators in (10). 



4120 B V Egorou 

From the definition (ll), taking into account (9) and substituting exp(B) from (10) 
for (8), we obtained the following fermion operator transformation laws: 

From the definitions of il a n d i z  we can derive commutation relations: 

Using these relations we can easily prove that the transformation (10) is unitary. 
The polaron wavefunction a& 10) must be defined from expression (12). To do so, 

we must calculateonly the vacuum matrixelements. Further formulae lookmuch simpler 
ifwetakeintoaccounttherelations c4cr10) = O(whereq# k)andcqlO) =O.Asaresult, 
only the diagonal elements of these operators do not vanish, and the wavefunction 
reduces to 

sin G(k) 
CY& 10) = U& COS G(k)lO) + 2 b(q, k)a;u(2S)”z c l - q  ~ ( k )  IO). (14) 

q 

G(k) = 2s b2(k, q )  = (OIL$(k, k)10). 
4 

Note that a formula similar to (14) for a conventional polaron was obtained in [20]. 
The function b(k, q) has not been determined yet. We define it using the condition 

that (14)istheeigenfunctionofHamiltonianHu(i.e. the termsl inear in~~ in transformed 
Hu must vanish). This is sufficient since the terms y+y+ must also vanish due to spin 
conservation, and the normal terms y+y turn out to be zero in the vacuum state. 

On substituting the wavefunction (14) into the Schrodinger equation, we obtain 

fiOatddl0) =‘%(k)eLdlO) 

where 

with the function b(k ,  q )  defined by 

b ( k  4) = G(q)[E(qu) -~(q)l/2S(N)”z tan G(q)[%q) - E ( h )  - 4 s  - k)l. (17) 
Excluding b(k, q)  from these formulae, we find the equation for the spin polaron 

spectrum %(k) in the standard form [2]: 
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In the case of narrow bands AS BAE (AEis the band width), the function b(k, q )  = 
-1/2S(N)@, and transformation (8) coincides with that found in [12], based on this 
extreme case. 

When the one-electron spin-down Green function for zero temperature is defined in 
the usual way, - 

%(w,p)  = i T i  e'"-ai'l (01 e"a'apd e-"otaJ 10) dt (19) 
-m 

it can be reduced to 

W % P )  = .(P)/(O -%(PI + ie) (20) 

near its pole, where r (p )  = cosz G ( p )  is the polaron wavefunction renormalization 
constant. 

4. Magnetic polaron damping and mobility 

To calculate the mobility, we shall use the results of Langreth and Kadanoff [21], who 
dealt with a similar polaron problem in ionic crystals. They obtained a perturbation 
expansion of the mobility asapower series in the coupling constant and electron density. 
They found that the current-current correlatorin the first non-vanishing orderisreduced 
to the product of two one-particle Green functions. For the mobility, they obtained the 
formula 

where ne is the electron density, 
wavevector, 

is the chemical potential, z/k,T+ -m, p is the 

A(P, w )  = 2dp)[t(p)/fiI-'/{[o - Q)lZ -1- [~(P)/fil-z} (22) 
is the spectral weight function for the one-electron Green function, r - ' (p)  = 2r(p, 
%(p))/fi is the reciprocal polaron lifetime and T ( p )  is the polaron damping determined 
in the usual way as T ( p )  = Im Z ( p ,  %) where is the self-energy. 

To calculate the mobility to the first non-trivial order, we can take the values of % ( p )  
and r ( p )  from Green's function (20), but the finite value of s ( p )  should be obtained 
from the Hamiltonian H1. To the second order in H I ,  we have 

where s denotes eigenstates of Ho with energy E(s) and Ip) = mJ 10) is the polaron 
wavefunction. Taking the imaginary part, we obtain 

r(P) = ?c r(s)l(slHim~dlo)z6(E(s) (24) 

We studied polaron states with small wavevectorsp and low energies, thus Is) in (23) 
must contain only spin-down states. The spin-up states have energies about 2.4s or 
higher so they cannot satisfy energy conservation criteria. The boson states in Is) include 
one thermofield magnon hole and one real thennofield magnon. This is a result of the 
two magnon interaction in H1. To obtain the value of damping, from (23), we calculate 
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the function HI IO). Instead of transforming the operator HI using transformation 
(8). it is convenient to calculate this function in terms of the initial operators a and c. If 
we retain only the terms linear in nq from (7) and (14), we find 

The states Is) have wavefunctions of the type 

1s) = a;ldy; lo) = e"ild8: $1 10) (26) 

and z(s) = z ( p l ) .  As we calculate the matrix element in terms of the initial operators, 
we use the latter equality for Is) in (26). To simplify the calculatrons, note that ", 
commutates with e". Although the commutator [eB,c;] does not equal zero, it can 
nevertheless be neglected because itscontribution to  the lifetime isof the order l/N(the 
single electron is not able to change real magnon states). So we have the convenient 
formulae 

Is)=;+ q 1  c+ e B apldlO) + =~;l~:a;l~lO) (274 

Ho+;a&lo) = tw, - w q ,  + %(P))zq:c;a&lO). (276) 

Substituting (27) and (25)  in (24) we obtain, after some tedious calculations, 

rw = w ( k  + 9 - 91) + W(9d - 4 9 )  - WG) 
44 I 

R ( k )  = ( ~ / ~ S ) C O S  G ( k )  COS' G(k + 9 - 9 l ) [ E ( k  + 9 -  91) + 2AS - X ( k  + 9 -SI)]. 

(286) 
Let us compare this formula with those already known. In the limit wP-+ 0, the 

relations % ( k )  = %(k + 9 - 9 ] )  and E(k)  = E(k + 9 - 91) are valid and formula (28) 
coincides with the result of [16] to the lowest order inn. 

In the extreme case of narrow bands or a high value of atomic spins, U S  9 1, the 
value R(k .  p) = A and (28) coincides with the results of [ l l .  121. 

For small wavevectors we can calculate the polaron damping explicitly. Polaron 
and magnon spectra can be represented in the usual way as E ( k )  = h2kz/2m, % ( k )  = 
%(O) + h2k'/2m*, w(9)  = wo + hZq2/2M, where m is the free-electron mass; m* is the 
polaroneffective mass.Mis themagnoneffective massandg(0) is theshift ofthe bottom 
band caused by polaron formation. Further, we can imply the validity of the inequalities 
M 9 m, M P m*, AS P wo, A S P  k,T. Since polaron thermal wavevectors are much 
smaller than magnon thermal wavevectors, we have, from (28), 

with K' = 2wum/h2, A* = (2AS - %(0))2m/h2. where U is the unit cell volume, R = 
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R(0,O) = A  cos3 G(0) ( 1  - %(O)/MS). In the case of intermediate or strong s-f 
coupling, h is not small. At low temperatures, we use the inequalityp Q A ,  and omitp2 
from the denominator in (29). 

For the temperature range kBT + U,,, when we use the identity fi2/2M = ISaz (where 
Q = v'I3 andlis the Heisenberg exchange integral), we obtain for the polaron reciprocal 
lifetime the formula 

r - ' (k )  = 2T(k)/h = [hk cos6 G(0)/8maS2](kB T/1S)7/2 Ca0(m*/m) (304  
in which m0 = 15 dZ c(7/2)/64 n3 = 1.5 X lo-', where cis  the Riemann function. 

it fulfil the condition 
So far, we have treated the spin polaron almost as a free particle, which requires that 

Q %(k), that is 

ka S [cos6G(0)/4Sz](kBT/IS)7~z Q0. (30b) 
For both extreme cases of broad and narrow band widths with 2 s  + 1 ,  cos G(0) = 1 .  

The result given by (30) is well known, but at temperatures kBT Q U,,, for which 
magnon energies must be taken into account explicitly, the expression for polaron 
lifetime has a different form. Retaining K and droppingpz from the nominator of (29), 
we find 

r - ' (k )  [um*kw; cos6 G(0)/32fi3~3fiS2](k~T/1S)3/z exp(-wo/kBT). (31) 
Finally, integrating (21) over polaron wavevectors, and taking into account the fact that 
the integrand is not smaU only for low energies, we obtain for the mobility the formula 

efi3 p2 d3p z2 ' 12kBTn,m2 I (2 .~)~r (p)  

= [ ~ 2 f i e ( 2 m * ) 1 ~ z / 3 m 2 ( ~ k B T ) 1 ~ z ] ( J r - 1 ( k ) / J k ) - ' .  (32) 

As we can see from this final formula, increasing temperature causes the mobility to 
decrease extremely rapidly. 

In conclusion, we note that magnetic field has a great effect on wo, and formulae 
(31) and (32) successfully describe the negative magnetoresistance of ferromagnetic 
semiconductors. 
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